Computational kinetic model of VEGF trapping by soluble VEGF receptor-1: effects of transendothelial and lymphatic macromolecular transport.
نویسندگان
چکیده
Vascular endothelial growth factor (VEGF) signal transduction through the cell surface receptors VEGFR1 and VEGFR2 regulates angiogenesis-the growth of new capillaries from preexistent microvasculature. Soluble VEGF receptor-1 (sVEGFR1), a nonsignaling truncated variant of VEGFR1, has been postulated to inhibit angiogenic signaling via direct sequestration of VEGF ligands or dominant-negative heterodimerization with surface VEGFRs. The relative contributions of these two mechanisms to sVEGFR1's purported antiangiogenic effects in vivo are currently unknown. We previously developed a computational model for predicting the compartmental distributions of VEGF and sVEGFR1 throughout the healthy human body by simulating the molecular interaction networks of the VEGF ligand-receptor system as well as intercompartmental macromolecular biotransport processes. In this study, we decipher the dynamic processes that led to our prior prediction that sVEGFR1, through its ligand trapping mechanism alone, does not demonstrate significant steady-state antiangiogenic effects. We show that sVEGFR1-facilitated tissue-to-blood shuttling of VEGF accounts for a counterintuitive and drastic elevation in plasma free VEGF concentrations after both intramuscular and intravascular sVEGFR1 infusion. While increasing intramuscular VEGF production reduces free sVEGFR1 levels through increased VEGF-sVEGFR1 complex formation, we demonstrate a competing and opposite effect in which increased VEGF occupancy of neuropilin-1 (NRP1) and the corresponding reduction in NRP1 availability for internalization of sVEGFR1 unexpectedly increases free sVEGFR1 levels. In conclusion, dynamic intercompartmental transport processes give rise to our surprising prediction that VEGF trapping alone does not account for sVEGFR1's antiangiogenic potential. sVEGFR1's interactions with cell surface receptors such as NRP1 are also expected to affect its molecular interplay with VEGF.
منابع مشابه
CALL FOR PAPERS Computational Modeling of Physiological Genomics Computational kinetic model of VEGF trapping by soluble VEGF receptor-1: effects of transendothelial and lymphatic macromolecular transport
Florence T. H. Wu, Marianne O. Stefanini, Feilim Mac Gabhann, Christopher D. Kontos, Brian H. Annex, and Aleksander S. Popel Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Biomedical Engineering and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; Division of Cardiovascular M...
متن کاملCompartment Model Predicts VEGF Secretion and Investigates the Effects of VEGF Trap in Tumor-Bearing Mice
Angiogenesis, the formation of new blood vessels from existing vasculature, is important in tumor growth and metastasis. A key regulator of angiogenesis is vascular endothelial growth factor (VEGF), which has been targeted in numerous anti-angiogenic therapies aimed at inhibiting tumor angiogenesis. Systems biology approaches, including computational modeling, are useful for understanding this ...
متن کاملA Compartment Model of VEGF Distribution in Humans in the Presence of Soluble VEGF Receptor-1 Acting as a Ligand Trap
Vascular endothelial growth factor (VEGF), through its activation of cell surface receptor tyrosine kinases including VEGFR1 and VEGFR2, is a vital regulator of stimulatory and inhibitory processes that keep angiogenesis--new capillary growth from existing microvasculature--at a dynamic balance in normal physiology. Soluble VEGF receptor-1 (sVEGFR1)--a naturally-occurring truncated version of V...
متن کاملThe Presence of VEGF Receptors on the Luminal Surface of Endothelial Cells Affects VEGF Distribution and VEGF Signaling
Vascular endothelial growth factor (VEGF) is a potent cytokine that binds to specific receptors on the endothelial cells lining blood vessels. The signaling cascade triggered eventually leads to the formation of new capillaries, a process called angiogenesis. Distributions of VEGF receptors and VEGF ligands are therefore crucial determinants of angiogenic events and, to our knowledge, no quanti...
متن کاملVEGF-A Regulates Cellular Localization of SR-BI as Well as Transendothelial Transport of HDL but Not LDL.
OBJECTIVE Low- and high-density lipoproteins (LDL and HDL) must pass the endothelial layer to exert pro- and antiatherogenic activities, respectively, within the vascular wall. However, the rate-limiting factors that mediate transendothelial transport of lipoproteins are yet little known. Therefore, we performed a high-throughput screen with kinase drug inhibitors to identify modulators of tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 38 1 شماره
صفحات -
تاریخ انتشار 2009